
DBS

Lecture Notes to
Big Data Management and Analytics

Winter Term 2018/2019

Stream Analytics

 Matthias Schubert, Matthias Renz, Felix Borutta, Evgeniy
Faerman, Christian Frey, Klaus Arthur Schmid, Daniyal

Kazempour, Julian Busch

 2016-2018

• Maintaining Histograms

• Change Detection

• Frequent Itemset Mining

• Clustering

• Classification

Outlook

Big Data Management and Analytics 2

Maintaining Histograms

• Histograms are graphical representations of the
distribution of numerical data

• Histograms estimate the
probability distribution of a
random variable

• Used for approximate query
processing with error guarantees

red purple

occurrences

Big Data Management and Analytics 3

Maintaining Histograms

• Histograms are defined by non-overlapping intervals or
buckets

• A bucket is defined by its boundaries and
its frequency count

• In case of streams:
One never observes all values of a random variable

→ k-bucket histogram defined as
] − ∞, 𝑏1],]𝑏1, 𝑏2], … ,]𝑏𝑘−1, ∞[buckets
with frequency counts 𝑓1, 𝑓2, … , 𝑓𝑘

Big Data Management and Analytics 4

Maintaining Histograms

In general: two types of histogram maintenance techniques

1. Equal-width histograms:
The range of observed values is divided into equi-sized
intervals (∀𝑖, 𝑗: 𝑏𝑖 , 𝑏𝑖+1 = (𝑏𝑗 , 𝑏𝑗+1))

2. Equal-frequency histograms:
The range of observed values is divided into 𝑘 intervals
such that the counts in each interval are equal
(∀𝑖, 𝑗: (𝑓𝑖= 𝑓𝑗))

Big Data Management and Analytics 5

Maintaining Histograms

K-buckets Histograms (Gibbons et al., 1997)

• Incremental maintenance of histograms applicable for
Insert-Delete Models

• Setting: Pre-defined number of intervals 𝑘 and continuously
occurring inserts and deletes as given in a sliding window
approach

• Histogram maintenance based on two operations

– Split & Merge Operation
– Merge & Split Operation

Big Data Management and Analytics 6

Maintaining Histograms

K-buckets Histograms (Gibbons et al., 1997)

1. Split & Merge Operation:

• Occurs with inserts

• Triggered whenever the count in a bucket is greater
than a given threshold

• Split overflowed bucket into two and merge two
consecutive buckets

Big Data Management and Analytics 7

Stream Applications and Algorithms

Maintaining Histograms

K-buckets Histograms (Gibbons et al., 1997)

1. Split & Merge Operation:

1. Split

2. Merge

Median

Big Data Management and Analytics 8

Maintaining Histograms

K-buckets Histograms (Gibbons et al., 1997)

1. Merge & Split Operation:

• occurs with deletes

• triggered whenever the count in a bucket is below a
given threshold

• merge “underflowed” bucket with a neighbor bucket
and split the bucket with the highest count

Big Data Management and Analytics 9

Stream Applications and Algorithms

Maintaining Histograms

K-buckets Histograms (Gibbons et al., 1997)

1. Merge & Split Operation:

2. Split

1. Merge

Median

Big Data Management and Analytics 10

Maintaining Histograms

Exponential Histograms (Datar et al., 2002)

• task: count the number of 1s among the last N readings of a
bit stream

• trivial solution: maintain a window of N Bits as a ring buffer
=> remove last bit and decrement count if it was a 1
=> insert new bit and increment count if it is a 1

Can we reduce the memory requirement to log(N)?
• exponential histograms estimate the number of 1s
• memory consumption is log(N)
• compresses older readings stronger than fresh ones

Big Data Management and Analytics 11

Maintaining Histograms

Exponential Histograms (Datar et al., 2002)

• varying bucket sizes and interval sizes

• each bucket consists of 𝑠𝑖𝑧𝑒 and 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝

• uses two additional variables, i.e. 𝐿𝐴𝑆𝑇 and 𝑇𝑂𝑇𝐴𝐿, to
estimate the number of elements in the sliding window

Big Data Management and Analytics 12

Maintaining Histograms

Exponential Histograms (Datar et al., 2002)

Algorithm Exponential Histogram Maintenance
Input: data stream 𝑆, window size 𝑁, error param. 𝜖
begin
𝑇𝑂𝑇𝐴𝐿 ≔ 0
𝐿𝐴𝑆𝑇 ≔ 0

while 𝑆 do

𝑥𝑖 ≔ 𝑆. 𝑛𝑒𝑥𝑡
if 𝑥𝑖 == 1 do

create new bucket 𝑏𝑖 with timestamp 𝑡𝑖
𝑇𝑂𝑇𝐴𝐿 += 1
while 𝑡𝑙 ≤ 𝑡𝑖 − 𝑁 do
𝑇𝑂𝑇𝐴𝐿 −= 𝑏𝑙 . 𝑠𝑖𝑧𝑒

drop the oldest bucket 𝑏𝑙

𝑏𝑙 ≔ 𝑏𝑙−1

𝐿𝐴𝑆𝑇 ≔ 𝑏𝑙 . 𝑠𝑖𝑧𝑒

while exist 1/𝜖 /2 + 2 buckets of the same size do

merge the two oldest buckets of the same size with the largest timestamp of both buckets
if last bucket was merged do
𝐿𝐴𝑆𝑇 ≔ size of the new created last bucket

end

Algorithm Exponential Histogram Count Estimation
Input: current Exponential Histogram EH
Output: estimate number of 1’s within 𝐸𝐻.𝑁
begin

return EH. TOTAL − EH. LAST/2
end

Big Data Management and Analytics 13

Maintaining Histograms
S = (1,0,1,0,1,1,1,0,0,0,1,1)

𝑁 = 8 (23=> 3 Buckets), 𝜖 = 1

2

Timest. 𝒕𝒊 Buckets 𝒃𝒊 Element 𝒙𝒊 TOTAL LAST # 𝒃𝒖𝒄𝒌𝒆𝒕𝒔
𝒐𝒇 𝒔𝒂𝒎𝒆 𝒔𝒊𝒛𝒆 = 𝝉 ?

1 11 1 1 0 no

2 11 0 1 0 no

3 11, 13 1 2 0 no

4 11, 13 0 2 0 no

5 11, 13, 15

23, 15

1 3 2 yes

6 23, 15, 16 1 4 2 no

7 23, 15, 16, 17

 23, 26, 17

1 5 2 yes

8

Big Data Management and Analytics 14

Change Detection

General Assumptions:
• for static datasets:

– data generated by a fixed process
– data is a sample of a fixed distribution

• for data streams:
– additional temporal dimension
– underlying process can change over time

→ challenge: detection and quantification of changes

Big Data Management and Analytics 15

Change Detection

Impact of changes on data processing algorithms:

• Data Mining:
data that arrived before a change can bias the model due to
characteristics that no longer hold after the change

• Query Processing:
query answers for time intervals with stable underlying data
distributions might be more meaningful

Big Data Management and Analytics 16

Change Detection

The nature of changes

• Concept Drifts:
gradual change in target concept

• Concept Shifts:
abrupt change in target concept

Big Data Management and Analytics 17

Change Detection

Two general approaches
• Monitoring the evolution of performance indicators

(Klinkenberg et al., 1998), e.g.

− accuracy of the current classifier

− attribute value distribution

− monitoring top attributes (according to any ranking)

• monitoring distribution on two different time-windows

Big Data Management and Analytics 18

Change Detection

CUSUM Algorithm (Page, 1954)

• monitors the cumulative sum of instances of a random
variable

• detects a change if the
cumulative difference between
observation and likelihood gets
larger than threshold 

• 𝜔𝑡 commonly represents the likelihood function

Algorithm CUSUM

Input: data stream 𝑆, threshold param. 𝛼
begin

𝐺0 ≔ 0
while 𝑆 do

𝑥𝑡 ≔ next instance of 𝑆
compute likelihood 𝜔𝑡

𝐺𝑡 ≔ max(0, 𝐺𝑡−1 − 𝜔𝑡 + 𝑥𝑡)
if 𝐺𝑡 > 𝛼 then

report change at time 𝑡

𝐺𝑡 ≔ 0
end

Big Data Management and Analytics 19

Change Detection

Two Windows Approach (Kifer et al., 2004)

Fixed Window 𝑤1 Sliding Window 𝑤2

time𝑐0

Big Data Management and Analytics 20

Change Detection

Two Windows Approach (Kifer et al., 2004)

𝑑 measures the distance between two probability distributions

Algorithm Two Windows Approach
Input: data stream 𝑆, window sizes 𝑚1 and 𝑚2, distance func. 𝑑: 𝐷 × 𝐷 → 𝑅, threshold param. 𝛼
begin
𝑐0 ≔ 0
𝑊1 ≔ first 𝑚1 points from time 𝑐0

𝑊2 ≔ most recent 𝑚2 points from 𝑆

while 𝑆 do

slide 𝑊2 by 1 point

if 𝑑 𝑊1,𝑊2 > 𝛼 then

𝑐0 ≔ current time
report change at time 𝑐0

𝑊1 ≔ first 𝑚1 points from time 𝑐0

𝑊2 ≔ most recent 𝑚2 points from 𝑆
end

Big Data Management and Analytics 21

Frequent Itemset Mining

• Let 𝐴 = {𝑎1, 𝑎2, … , 𝑎𝑛} be a set of items (e.g. products)

• Any subset 𝐼 ⊆ 𝐴 is called an itemset

• Let 𝑇 = (𝑡1, 𝑡2, … , 𝑡𝑚) be a set of transactions with 𝑡𝑖 being a
pair 𝑇𝐼𝐷𝑖 , 𝐼𝑖 where 𝐼𝑖 ⊆ 𝐴 is a set of items (e.g. the set of
products bought by a customer within a certain period in
time)

• The support 𝜎𝑚𝑖𝑛 of an itemset 𝐼 ⊆ 𝐴 is the number/fraction
of transactions 𝑡𝑖 ∈ 𝑇 that contain 𝐼

Big Data Management and Analytics 22

Frequent Itemset Mining

Example:
Given the set of items 𝐴 = 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 , the set of transactions
𝑇, and a relative support 𝜎𝑚𝑖𝑛 = 0.3, determine the set of
frequent item sets that is 𝐼 ⊆ 𝐴 𝜎𝑇 𝐼 ≥ 𝜎𝑚𝑖𝑛 .

𝑻𝑰𝑫𝒊 𝑰𝒊

1 {𝑎, 𝑏, 𝑐, 𝑑}

2 {𝑏, 𝑑, 𝑒}

3 {𝑎, 𝑏, 𝑑}

4 {𝑎, 𝑏, 𝑐, 𝑑, 𝑒}

5 {𝑎, 𝑐}

6 {𝑐, 𝑑}

7 {𝑎, 𝑐, 𝑑}

𝑇:

0 items 1 item 2 items 3 items

∅: 7 𝑎 : 5 𝑎, 𝑏 : 3 𝑎, 𝑐, 𝑑 : 3

𝑏 : 5 𝑎, 𝑐 : 4 𝑎, 𝑏, 𝑑 : 3

𝑐 : 5 𝑎, 𝑑 : 4

𝑑 : 6 𝑏, 𝑑 : 4

𝑐, 𝑑 : 4

Big Data Management and Analytics 23

Frequent Itemset Mining

search space

∅

𝑎 𝑏 𝑐 𝑑 𝑒

𝑏𝑐𝑎𝑒𝑎𝑑 𝑏𝑒𝑏𝑑𝑎𝑏 𝑎𝑐 𝑑𝑒𝑐𝑒𝑐𝑑

𝑎𝑐𝑒𝑎𝑐𝑑𝑎𝑏𝑒 𝑏𝑐𝑑𝑎𝑑𝑒𝑎𝑏𝑐 𝑎𝑏𝑑 𝑐𝑑𝑒𝑏𝑑𝑒𝑏𝑐𝑒

𝑎𝑏𝑐𝑑 𝑎𝑏𝑐𝑒 𝑎𝑏𝑑𝑒 𝑎𝑐𝑑𝑒 𝑏𝑐𝑑𝑒

𝑎𝑏𝑐𝑑𝑒

Big Data Management and Analytics 24

Frequent Itemset Mining

LossyCounting Algorithm (Manku et al., 2002)

• One-pass algorithm for computing frequency counts that
exceed a user-specified threshold

• Approximate error but guaranteed to be below a user-
specified boundary

→ Two parameters:
− Support threshold 𝑠 ∈ 0,1
− Error threshold 𝜖 ∈ 0,1
− 𝜖 ≪ 𝑠

Big Data Management and Analytics 25

Frequent Itemset Mining

LossyCounting Algorithm (Manku et al., 2002)

• Setup:

− Stream 𝑆 is divided into buckets of width 𝜔 =
1

𝜖

− The current bucket id 𝑏𝑐𝑢𝑟𝑟 =
𝑁

𝜔

− For element 𝑒, the true frequency seen so far is 𝑓𝑒
− The data structure 𝐷 is a set of entries of the form (𝑒, 𝑓, Δ)

− 𝑒 is the element
− 𝑓 is the frequency seen since 𝑒 is in 𝐷
− Δ is the maximum possible error, resp. the estimated frequency of

𝑒 in buckets 𝑏 = 1 to 𝑏𝑐𝑢𝑟𝑟-1

Big Data Management and Analytics 26

Frequent Itemset Mining

LossyCounting Algorithm (Manku et al., 2002)

Algorithm LossyCounting

Input: data stream 𝑆, error threshold 𝜖
begin

𝐷 = ∅, 𝑁 = 0, 𝜔 =
1

𝜖

while 𝑆 do

𝑒𝒊 ≔ next object from 𝑆
𝑁 += 1

b𝑐𝑢𝑟𝑟 =
𝑁

𝜔

if 𝑒𝑖 ∈ 𝐷 then

increment 𝑒𝑖’s frequency by 1

else

𝐷. 𝑎𝑑𝑑 𝑒𝑖 , 1, 𝑏𝑐𝑢𝑟𝑟 − 1

whenever 𝑁 ≡ 0 𝑚𝑜𝑑 𝜔 do
foreach entry (𝑒, 𝑓, Δ) in 𝐷 do

if 𝑓 + Δ ≤ 𝑏𝑐𝑢𝑟𝑟 then
delete (𝑒, 𝑓, Δ)

end

Algorithm LossyCounting – User request

Input: lookup table 𝐷, support threshold 𝑠
begin
𝑆 = ∅

foreach entry (𝑒, 𝑓, Δ) in 𝐷 do
if 𝑓 ≥ 𝑠 − 𝜖 𝑁 then

add (𝑒, 𝑓, Δ) to 𝑆
return 𝑆

end

𝑓 is the exact frequency count of 𝑒 since the
entry was inserted into 𝐷

Δ is the maximum number of times 𝑒 could
have occurred in the first 𝑏𝑐𝑢𝑟𝑟 − 1 buckets

Big Data Management and Analytics 27

Clustering from Data Streams

Clustering is the process of grouping objects into different
groups, such that the similarity of data in each subset is
high, and between different subsets is low.

Clustering from data streams aims at maintaining a
continuously consistent good clustering of the sequence
observed so far, using a small amount of memory and time.

Big Data Management and Analytics 28

Clustering from Data Streams

General approaches to clustering

• Partitioning: Fixed number of clusters, new object is
assigned to closest cluster center (k-means/k-medoid)

• Density-based: Take connectivity and density functions into
account (DBSCAN)

• Hierarchical: Find a tree-like structure representing the
hierarchy of the cluster model (Single Link/Complete Link)

• Grid-based: Partition the space into grid cells (STING)

• Model-based: Take a model and find the best fit clustering
(COBWEB)

Big Data Management and Analytics 29

Clustering from Data Streams

Requirements for stream clustering algorithms

• Compactness of representation

• Fast, incremental processing (one-pass)

• Tracking cluster changes
(as clusters might (dis-)appear over time)

• Clear and fast identification of outliers

Big Data Management and Analytics 30

Clustering from Data Streams

LEADER algorithm (Spath, 1980)

• Simplest form of partitioning based clustering applicable to
data streams

• Depends on the order of
incoming objects

• Depends on a good choice
of the threshold parameter 𝛿

Algorithm LEADER

Input: data stream 𝑆, threshold param. 𝛿
begin

while 𝑆 do

𝒙𝒊 ≔ next object from 𝑆
find closest cluster 𝑐𝑐𝑙𝑜𝑠 to 𝑥𝑖

if 𝑑 𝑐𝑐𝑙𝑜𝑠 , 𝑥𝑖 < 𝛿 then

assign 𝑥𝑖 to 𝑐𝑐𝑙𝑜𝑠

else

create new cluster with 𝑥𝑖

end

Big Data Management and Analytics 31

Clustering from Data Streams

Stream K-means (O'Callaghan et al., 2002)

• Partition data stream 𝑆 into chunks 𝑋1, … , 𝑋𝑛, … so that each
chunk fits in memory

• Apply k-means for each chunk 𝑋𝑖 and retrieve k cluster
centers each weighted with the number of points it
compresses

• Apply k-means on the cluster centers to get an overall k-
means clustering when demanded

Big Data Management and Analytics 32

Clustering from Data Streams

Microcluster-based Clustering

• Common approach to capture temporal information for
being able to deal with cluster evolution

• A microcluster (or cluster feature CF) is a triple (𝑁, 𝐿𝑆, 𝑆𝑆)
that stores the sufficient information of a set of points

− 𝑁 is the number of points

− 𝐿𝑆 is the linear sum of the 𝑁 points, i.e. 𝑖=1
𝑁 𝑥𝑖

− 𝑆𝑆 is the square sum of the 𝑁 points, i.e. 𝑖=1
𝑁 𝑥𝑖

2

Big Data Management and Analytics 33

Clustering from Data Streams

Microcluster-based Clustering
• The properties of cluster features are:

− Incrementality:
Ni = Ni + 1, 𝐿𝑆𝑖 = 𝐿𝑆𝑖 + 𝑥, 𝑆𝑆𝑖 = 𝑆𝑆𝑖 + 𝑥²

− Additivity:
Nk = Ni + Nj, 𝐿𝑆𝑘 = 𝐿𝑆𝑖 + 𝐿𝑆𝑗 , 𝑆𝑆𝑘 = 𝑆𝑆𝑖 + 𝑆𝑆𝑗

− Centroid: 𝑋𝑐 =
𝐿𝑆𝑖

𝑁

− Radius: 𝑟 =
𝑆𝑆𝑖

𝑁𝑖
−

𝐿𝑆𝑖

𝑁𝑖

2

Big Data Management and Analytics 34

Clustering from Data Streams

BIRCH (Zhang et al., 1996)
• Usage of Microclusters within CF-Tree

− 𝐵+-Tree like structure

− Two user specified parameters:
− Branching factor 𝐵
− Maximum diameter (or radius) 𝑇 of a CF

− Each non-leaf node contains at most 𝐵 entries of the
form 𝐶𝐹𝑖 , 𝑐ℎ𝑖𝑙𝑑𝑖 where
− 𝐶𝐹𝑖 is the CF representing the subcluster that child forms
− 𝑐ℎ𝑖𝑙𝑑𝑖 is a pointer to the i-th child node

− Each leaf node contains entries of the form [𝐶𝐹𝑖 , 𝑝𝑟𝑒𝑣, 𝑛𝑒𝑥𝑡]

Big Data Management and Analytics 35

Stream Applications and Algorithms

Clustering from Data Streams

BIRCH (Zhang et al., 1996)

• Inserts into CF-Tree

− At each non-leaf node, the
new object follows the
closest-CF path

− At leaf node level, the
closest-CF tries to absorb the object (which depends on diameter
threshold 𝑇 and the page size)

− If possible: update closest-CF

− If not possible: make a new CF entry in the leaf node (split the
parent node if there is no space)

…𝐶𝐹1 𝐶𝐹𝑏

…𝐶𝐹1 𝐶𝐹𝑏

𝐶𝐹1

𝐶𝐹2

…

𝐶𝐹1

𝐶𝐹𝑏

Big Data Management and Analytics 36

Clustering from Data Streams

BIRCH (Zhang et al., 1996)

Two step algorithm:

1. Online component:
− Microclusters are kept locally
− Maintenance of the hierarchical structure
− Optional: Condense by building smaller CF-Tree (requires scan

over leaf entries)

2. Offline component:
− Apply global clustering to all leaf entries
− Optional: Cluster refinement to the cost of additional passes (use

centroids retrieved by global clustering and re-assign data points)

Big Data Management and Analytics 37

CluStream [AggEtAl03]

Assume that the data stream consists of a set of multi-dimensional
records X1,…Xn,…, arriving at T1,…,Tn,…: Xi = (xi

1,…,xi
d)

• The micro-cluster summary for a set of d-dimensional points (X1, X2,
…, Xn) arriving at time points T1, T2, …, Tn is defined as:

– CFT = (CF2x , CF1x , CF2t, CF1t, n)

• Easy calculation of basic measures to characterize a cluster:

•

• Important properties of micro-clusters:
– Incrementality: CFT(C1 U p) = CFT(C1) + p
– Additivity: CFT(C1 U C2) = CFT(C1) + CFT(C2)
– Subtractivity: CFT(C1 - C2) = CFT(C1) - CFT(C2), C1  C2

N
i=1Xi

2 N
i=1Xi N

i=1TiN
i=1Ti

2

n

CF x1
 Center:

2

12










n

CF

n

CF xx

 Radius:

Big Data Management and Analytics 38

CluStream: overview

• A fixed number of q micro-clusters is maintained over time

• Initialize: apply q-Means over initPoints, built a summary for each
cluster

• Online micro-cluster maintenance as a new point p arrives from the
stream
– Find the closest micro-cluster clu for the new point p

o If p is within the max-boundary of clu, p is absorbed by clu

o o.w., a new cluster is created with p

– The number of micro-clusters should not exceed q
o Delete most obsolete micro-cluster or merge the two closest ones

• Periodic storage of micro-clusters snapshots into disk
– At different levels of granularity depending upon their recency

• Offline macro-clustering
– Input: A user defined time horizon h and number of macro-clusters k to be

detected

– Locate the valid micro-clusters during h

– Apply k-Means upon these micro-clusters  k macro-clusters

Big Data Management and Analytics 39

CluStream: Initialization step

• Initialization

– Done using an offline process in the beginning

– Wait for the first InitNumber points to arrive

– Apply a standard k-Means algorithm to create q clusters

o For each discovered cluster, assign it a unique ID and create its micro-
cluster summary.

• Comments on the choice of q

– much larger than the natural number of clusters

– much smaller than the total number of points arrived

Big Data Management and Analytics 40

CluStream: Online step

• A fixed number of q micro-clusters is maintained over time

• Whenever a new point p arrives from the stream

– Compute distance between p and each of the q maintained micro-cluster
centroids

– clu  the closest micro-cluster to p

– Find the max boundary of clu
o It is defined as a factor of t of clu radius

– If p falls within the maximum boundary of clu
o p is absorbed by clu

o Update clu statistics (incremental property)

– Else, create a new micro-cluster with p, assign it a new ID, initialize its
statistics
o To keep the total number of micro-clusters fixed (i.e., q):

• Delete the most obsolete micro-cluster or
• If its safe based on its time statistics

• Merge the two closest ones (Additivity property)
• When two micro-clusters are merged, a list of ids is created. This way, we can

identify the component micro-clusters that comprise a micro-cluster.

Big Data Management and Analytics 41

CluStream: storing micro-cluster storage

• all micro-clusters are saved to disc for a given time frame (snapshot)

• not all snapshots are kept. goal: provide a high granularity for recent
snapshots and maintain a rough picture of older snapshots

 Pyramidal Storage

idea: Maintain the last ai+1 snapshots for multiple levels of storage
granularity. => larger level cover a longer history with less granularity

– For each level i, we store a snapshot if the
current timestamp t mod ai = 0, except
t mod ai+1 = 0 holds as well (no redundancy)

– At most ab+1 snapshots are stored at each
order; if a new snapshot arrives the
oldest one is deleted.

• #levels: loga(t)

• #stored snapshots: (ab+1)loga(t) Snapshots stored at t = 60, a=2, b=2

level clock times

0 60 59 58 57 56

1 60 58 56 54 52

2 60 56 52 48 44

3 48 40 32 24 16

4 48 32 16

5 32

Big Data Management and Analytics 42

CluStream: Offline step

• The offline step is applied on demand

• User input: time horizon h, # macro-clusters k to be detected

• Step 1: Find the active micro-clusters during h:
– We exploit the subtractivity property to find the active micro-clusters during h:

o Suppose current time is tc. Let S(tc) be the set of micro-clusters at tc.

o Find the stored snapshot which occurs just before time tc-h. We can always find such a
snapshot h’. Let S(tc–h’) be the set of micro-clusters.

o For each micro-cluster in the current set S(tc), we find the list of its component micro-cluster
ids. For each of the list of ids, find the corresponding micro-clusters in S(tc–h’).

o Subtract the CF vectors for the corresponding micro-clusters in S(tc–h’)

o This ensures that the micro-clusters created before the user-specified horizon do not
dominate the result of clustering process

• Step 2: Apply k-Means over the active micro-clusters in h to derive the k macro-
clusters
– Initialization: centers are not picked up randomly, rather sampled with probability

proportional to the number of points in a given micro-cluster

– Distance is the centroid distance

– New centers are defined as the weighted centroids of the micro-clusters in that
partition

Big Data Management and Analytics 43

CluStream: discussion

+ CluStream clusters large evolving data streams

+ Views the stream as a changing process over time, rather than
clustering the whole stream at a time

+ Can characterize clusters over different time horizons in changing
environment

+ Provides flexibility to an analyst in a real-time and changing
environment

– Fixed number of micro-clusters maintained over time

– Sensitive to outliers/ noise

Big Data Management and Analytics 44

The (batch) classification process

IF rank = ‘professor’ OR years >
6 THEN tenured = ‘yes’

Classifier
(Model)

IF (rank!=’professor’) AND
(years < 6) THEN tenured =

‘no’

Training
data

NAME RANK YEARS TENURED

Mike Assistant Prof 3 no

Mary Assistant Prof 7 yes

Bill Professor 2 yes

Jim Associate Prof 7 yes

Dave Assistant Prof 6 no

Anne Associate Prof 3 no

Class attributePredictive attributes

Unseen data

NAME RANK YEARS TENURED

Jeff Professor 4 ?

Patrick Assistant Professor 8 ?

Maria Assistant Professor 2 ?

Tenured?

?

?

Tenured?

Tenured?

Model construction

Prediction

Big Data Management and Analytics 45

Stream vs batch classification 1/2

• So far, classification as a batch/ static task

– The whole training set is given as input to the algorithm for the
generation of the classification model.

– The classification model is static (does not change)

– When the performance of the model drops, a new model is
generated from scratch over a new training set.

• But, in a dynamic environment data change continuously

– Batch model re-generation is not appropriate/sufficient anymore

Big Data Management and Analytics 46

Stream vs batch classification 2/2

Need for new classification algorithms that

– have the ability to incorporate new data

– deal with non-stationary data generation
processes (concept drift/shift)
o ability to remove obsolete data

– subject to:
o resource constraints (processing time, memory)

o single scan of the data (one look, no random access)

Big Data Management and Analytics 47

Non-stationary data distribution  Concept drift

• In dynamically changing and non-stationary environments, the data distribution
might change over time yielding the phenomenon of concept drift

• Different forms of change:

– The input data characteristics might change over time

– The relation between the input data and the target variable might change over time

• Concept drift between t0 and t1 can be defined as

– P(X,y): the joint distribution between X and y

• According to the Bayesian Decision Theory: 𝑝 𝑦 𝑋 =
𝑝 𝑦 𝑝(𝑋|𝑦)

𝑝(𝑋)

• So, changes in data can be characterized as changes in:

– The prior probabilities of the classes p(y)

– The class conditional probabilities p(X|y).

– The posterior p(y|X) might change

∃ 𝑋 ∶ 𝑝𝑡0(X,y) ≠ 𝑝𝑡1(X,y)

Big Data Management and Analytics 48

Example: Evolving class priors

• E.g., evolving class distribution

– The class distribution might change over time

– Example: Twitter sentiment dataset

o 1.600.000 instances split in 67 chunks of 25.000 tweets per chunk

o Balanced dataset (800.000 positive, 800.000 negative tweets)

o The distribution of the classes changes over time

o Dataset online at: https://sites.google.com/site/twittersentimenthelp/for-
researchers

Evolving class distribution [Sinelnikova12]

Big Data Management and Analytics 49

Real vs virtual drift

• Real concept drift

– Refers to changes in p(y|X). Such changes can happen with or without
change in p(X).

– E.g., “I am not interested in tech posts anymore”

• Virtual concept drift

– If the p(X) changes without affecting p(y|X)

– Drifts (and shifts)

o Drift more associated to gradual changes

o Shift refers to abrupt changes

Source: [GamaETAl13]

Big Data Management and Analytics 50

Model adaptation

• As data evolve over time, the classifier should be updated to “reflect”
the evolving data

– Update by incorporating new data

– Update by forgetting obsolete data

The classification boundary gradually drifts from b1 (at T1) to b2 (at T2) and finally to b3 (at T3).
(Source: A framework for application-driven classification of data streams, Zhang et al, Journal

Neurocomputing 2012)

Big Data Management and Analytics 51

Data stream classifiers

• The batch classification problem:

– Given a finite training set D={(x,y)} , where y={y1, y2, …, yk}, |D|=n, find a
function y=f(x) that can predict the y value for an unseen instance x

• The data stream classification problem:

– Given an infinite sequence of pairs of the form (x,y) where y={y1, y2, …, yk},
find a function y=f(x) that can predict the y value for an unseen instance x

• the label y of x is not available during the prediction time

• but it is available shortly after for model update

• Example applications:

– Fraud detection in credit card transactions

– Churn prediction in a telecommunication company

– Sentiment classification in the Twitter stream

– Topic classification in a news aggregation site, e.g. Google news

– …

Supervised scenario

Big Data Management and Analytics 52

(Batch) Decision Trees (DTs)

• Training set: D = {(x,y)}

– predictive attributes: x=<x1, x2, …, xd>

– class attribute: y={y1, y2, …, yk}

• Goal: find y=f(x)

• Decision tree model

– nodes contain tests on the predictive attributes

– leaves contain predictions on the class attribute

Training set

Big Data Management and Analytics 53

(Batch) DTs: Selecting the splitting attribute

• Basic algorithm (ID3, Quinlan 1986)

– Tree is constructed in a top-down recursive divide-and-conquer manner

– At start, all the training examples are at the root node

– But, which attribute is the best?

Goal: select the most “useful”
attribute
• i.e., the one resulting in the purest

partitioning

Attribute selection measures:
• Information gain
• Gain ratio
• Gini index

Big Data Management and Analytics 54

(Batch) DTs: Information gain

• Used in ID3

• It uses entropy, a measure of pureness of the data

• The information gain Gain(S,A) of an attribute A relative to a collection
of examples S measures the gain reduction in S due to splitting on A:

• Gain measures the expected reduction in entropy due to splitting on A

• The attribute with the higher entropy reduction is chosen





)(

)(
||

||
)(),(

AValuesv

v
v SEntropy

S

S
SEntropyASGain

Before splitting After splitting on A

Big Data Management and Analytics 55

(Batch) DTs: Entropy

• Let S be a collection of positive and negative examples for a binary
classification problem, C={+, -}.

• p+: the percentage of positive examples in S

• p-: the percentage of negative examples in S

• Entropy measures the impurity of S:

• Examples :
– Let S: [9+,5-]

– Let S: [7+,7-]

– Let S: [14+,0-]

• Entropy = 0, when all members belong to the same class

• Entropy = 1, when there is an equal number of positive and negative examples

)(log)(log)(22   ppppSEntropy

940.0)
14

5
(log

14

5
)

14

9
(log

14

9
)(22 SEntropy

1)
14

7
(log

14

7
)

14

7
(log

14

7
)(22 SEntropy

0)
14

0
(log

14

0
)

14

14
(log

14

14
)(22 SEntropy

in the general case
(k-classification problem)





k

i

ii ppSEntropy
1

2)(log)(

Big Data Management and Analytics 56

(Batch) DTs: Information gain example

• Which attribute to choose next?

Big Data Management and Analytics 57

From batch to stream DT induction

• Thus far, in order to decide on which attribute to use for splitting in a
node (essential operation for building a DT), we need to have all the
training set instances resulting in this node.

• But, in a data stream environment

– The stream is infinite

– We can’t wait for ever in a node

• Can we make a valid decision based on some data?
– Hoeffding Tree or Very Fast Decision Tree (VFDT) [DomingosHulten00]

Big Data Management and Analytics 58

Hoeffding Tree [DomingosHulten00]

• Idea: In order to pick the best split attribute for a node, it may be
sufficient to consider only a small subset of the training examples that
pass through that node.

– No need to look at the whole dataset

– (which is infinite in case of streams)

• Problem: How many instances are necessary?

– Use the Hoeffding bound!

Big Data Management and Analytics 59

The Hoeffding bound

• Consider a real-valued random variable r whose range is R

– e.g., for a probability the range is 1

– for information gain the range is log2(c), where c is the number of classes

• Suppose we have n independent observations of r and we compute its mean 𝑟

• The Hoeffding bound states that with confidence 1-δ the true mean of the
variable, μr, is at least 𝑟-ε, i.e., P(μr  𝑟-ε) = 1-δ

• The ε is given by:

• This bound holds true regardless of the distribution generating the values, and
depends only on the range of values, number of observations and desired
confidence.
– A disadvantage of being so general is that it is more conservative than a distribution-

dependent bound

n

R

2

)/1ln(2 
 

Big Data Management and Analytics 60

Using the Hoeffding bound to select the best split at a node

• Let G() be the heuristic measure for choosing the split attribute at a
node

• After seeing n instances at this node, let

– Xa : be the attribute with the highest observed G()

– Xb : be the attribute with the second-highest observed G()

•  𝐺= 𝐺(Xa) – 𝐺(Xb) 0 the difference between the 2 best attributes

• Δ 𝐺 is the random variable being estimated by the Hoeffding bound

• Given a desired δ, if Δ 𝐺>ε after seeing n instances at the node

– the Hoeffding bound guarantees that with probability 1-δ, Δ 𝐺  Δ 𝐺-ε>0.

– Therefore we can confidently choose Xa for splitting at this node

• Otherwise, i.e., if  𝐺 < ε, the sample size is not enough for a stable
decision.

– With R and δ fixed, the only variable left to change ε is n

– We need to extend the sample by seeing more instances, until ε becomes
smaller than Δ 𝐺

Big Data Management and Analytics 61

Hoeffding Tree algorithm

Those needed by the heuristic
evaluation function G()

The evaluation of G() after each
instance is very expensive.
 Evaluate G() only after Nmin

instances have been observed
since the last evaluation.

leaf(#examples)mod Nmin=0

Big Data Management and Analytics 62

Hoeffding tree algorithm more details

• Breaking ties

– When ≥2 attributes have very similar G's, potentially many examples
will be required to decide between them with high confidence.

– This is presumably wasteful, as it makes little difference which is
chosen.

– Break it by splitting on current best if ΔG<ε<τ, τ a user-specified
threshold

• Grace period (MOA’s term)

– Recomputing G() after each instance is too expensive.

– A user can specify # instances in a node that must be observed
before attempting a new split

Big Data Management and Analytics 63

Hoeffding Tree overview

• The HT accommodates new instances from the stream

• But, doesn’t delete anything (doesn’t forget!)

• With time

– The tree becomes more complex (overfitting is possible)

– The historical data dominate its decisions (difficult to adapt to changes)

t0 t1 t2 t3 tn

t0 t2t1 tnt3

Decision boundary

HT over time [Mahmud15]

Big Data Management and Analytics 64

Adaptive Size Hoeffding Tree (ASHT) [BifetEtAl09]

• Introduces a maximum size (#splitting nodes) bound

• When the limit is reached, the tree is reset

– Test for the limit, after node’s split

• The tree forgets

– but, due to the reset, it looses all information learned thus far

t0 t1 t2 t3 t4

Reset

Tree with maximum size

t0 t2t1 t4t3

Decision boundary

ASHT over time [Mahmud15]

Big Data Management and Analytics 65

Concept-Adapting Hoeffding Tree [HultenEtAl01]

• Starts maintaining an alternate sub-tree when the performance of a node
decays

• When the new sub-tree starts performing better, it replaces the original
one

• If original sub-tree keeps performing better, the alternate sub-tree is
deleted and the original one is kept

t0 t1 t2 t3 t4

x

Error increasing nodes
Alternate branch

t0 t2t1 t4t3

Performance degrading Keep original Switch to alternate

AdaHT over time [Mahmud15]

Big Data Management and Analytics 66

Ensemble of classifiers

Idea:

• Instead of a single model, use a combination of models to increase
accuracy

• Combine a series of T learned models, M1, M2, …, MT, with the aim of
creating an improved model M*

• To predict the class of previously unseen records, aggregate the
predictions of the ensemble

Big Data Management and Analytics 67

Many methods

• Bagging

– Generate training samples by sampling with replacement (bootstrap)

– Learn one model at each sample

• Boosting

– At each round, increase the weights of misclassified examples

• Stacking

– Apply multiple base learners

– Meta learner input = base learner predictions

Big Data Management and Analytics 68

Ensemble of Adaptive Size Hoeffding Trees (ASHT)
[BifetEtAl09] 1/2

• Bagging using ASHTs of different sizes

– Smaller trees adapt more quickly to changes

– Larger trees perform better during periods with no or little
change

– The max allowed size for the nth ASHT tree is twice the max
allowed size for the (n-1)th tree.

– Each tree has a weight proportional to the inverse of the square
of its error

– The goal is to increase bagging performance by tree diversity

T1

T4
T3

T2

Big Data Management and Analytics 69

Tree1

Tree2
Tree3

1 0 0 1 0 1 1 1 0 0 1 1 1 1 0 1 0 1 0 1 1 0

time

T
im

e

Tree3 Tree2 Tree1

reset

reset

reset

reset

t1

t2

t3

t4

Ensemble of Adaptive Size Hoeffding Trees (ASHT)
[BifetEtAl09] 1/2

Big Data Management and Analytics 70

Hoeffding Tree family overview

• All HT, AdaHT, ASHT accommodate new instances from the stream

• HT does not forget

• ASHT forgets by resetting the tree once its size reaches its limit

• AdaHT forgets my replacing sub-trees with new ones

• Bagging ASHT uses varying size trees that respond differently to change

Big Data Management and Analytics 71

Summary: Stream Classification

• Extending traditional classification methods for data streams implies
that

– They should accommodate new instances

– They should forget obsolete instances

• Typically, all methods incorporate new instances from the model

• They differ mainly on how do they forget
– No forgetting, sliding window forgetting, damped window forgetting,…

• and which part of the model is affected
– Complete model reset, partial reset, …

• So far, we focused on fully-supervised learning and we assumed
availability of class labels for all stream instances
– Semi-supervised learning

– Active learning

• Dealing with class imbalances, rare-classes

• Dealing with dynamic feature spaces

Big Data Management and Analytics 72

further reading

• Joao Gama: Knowledge Discovery from Data Streams
(http://www.liaad.up.pt/area/jgama/DataStreamsCRC.pdf)

• Gibbons, Phillip B., Yossi Matias, and Viswanath Poosala. Fast incremental
maintenance of approximate histograms. VLDB. Vol. 97 (1997)

• Datar, Mayur, et al. Maintaining stream statistics over sliding windows. SIAM
Journal on Computing 31.6 (2002)

• Klinkenberg, R., and Renz I. Adaptive information filtering: Learning drifting
concepts. Proc. of AAAI-98/ICML-98 workshop Learning for Text Categorization
(1998)

• Page, E. S. Continuous Inspection Scheme. Biometrika 41 (1954)

• Kifer, Daniel, Shai Ben-David, and Johannes Gehrke. Detecting change in data
streams. VLDB. (2004)

Big Data Management and Analytics 73

further reading

• Spath, H. Cluster Analysis Algorithms for Data Reduction and Classification. Ellis
Horwood (1980)

• L. O'Callaghan, N. Mishra, A. Meyerson, S. Guha, R. Motwani: Streaming-Data
Algorithms for High-Quality Clustering. ICDE. (2002)

• Zhang, Tian, Raghu Ramakrishnan, and Miron Livny. BIRCH: an efficient data
clustering method for very large databases. ACM SIGMOD (1996)

• Aggarwal, Charu C., et al. A framework for clustering evolving data streams. Proc.
VLDB (2003)

• Manku, Gurmeet Singh, and Rajeev Motwani. Approximate frequency counts over
data streams. Proc. VLDB. (2002)

Big Data Management and Analytics 74

